

Maße zentraler Tendenz

Sie können sich die Maße zentraler Tendenz sehr einfach in SPSS für die Variable, die Sie interessiert, ausgeben lassen.

Ś	SPSS Statis	tics Datei	Bearbeit	ten Ansich	t Daten	Transformieren	Analysie	ren Grafi	ik Extras En	weiterunge	n Fen	nster Hilfe	6 0	* 🕑 🔳		ນ 😂 🕻	Fr. 15.	Sept. 11:08
• •	•			i i i i i i i i i i i i i i i i i i i	Studienmot	tivation_benar	Poweran	alyse		>	taSet2	2] - IBM SPSS	Statistics D	ateneditor				
	8			1		- AL 📥	Metaana Berichte	lyse		>	hsuch	1						
44 : A	EQ_HO_2	3			1		Deskript	ive Statistik	(en	>	123 H	läufigkeiten				Sicht	ar: 68 von	68 Variablen
	💰 ID_TN	뤚 gender	🛷 age	AEQ_EN	AEQ_EN	AEQ_EN A	Bayesscl	he Statistik		>	E D	eskriptive Stat	istik		AEQ	AX 🕜 AEC	AX 🥜 AE	Q_AX
1	-99	1	19	* _1 3	* _2 3	× _3	Tabellen			>	🛨 D	eskriptive Stat	istiken für Gr	undgesamtheit		1	2 *	-3 *
1	-55	2	18	3	3		Mittelwe	rte und Prop	portionen verglei	ichen >	4 E	xplorative Date	nanalyse		1	·	2	-
2		1	10	2	2		Allgemei	nes lineares	s Modell	>	🐺 К	reuztabellen			1	3 .	1	1
3	2	1	10	2	2	2 4	Verallger	neinerte line	eare Modelle	>	+ T	URF-Analyse			1	1	-	1
4	3	1	17	5	4	4	Gemisch	te Modelle		>	V 12	erhältnis			1	2	3	1
5	4	1	19	2	3	4	Korrelati	on		>	н к	onfidenzinterv	alle der Antei	ile	1	2	3	1
6	5	3	20	3	2	2	Regressi	on		>	2 P	-P-Diagramme			1	3	2	1
7	6	2	24	4	4	4	Loglinea	(>	2 G	-Q-Diagramm	ə		1	1	2	2
8	7	1	27	2	2	2	Neurona	e Netze		>	5	1	1	1	1	3	3	1
9	8	2	23	4	4	3	Klassifizi	eren		>	4	1	1	1	1	1	2	1
10	9	2	21	4	5	4	Dimensio	onsreduktion	n	>	4	1	1	1	1	1	3	1
11	10	3	20	3	3	2	Metrisch			>	3	4	4	3	2	2	4	1
12	11	1	19	3	3	2	Nicht pa	ametrische	e Tests	>	3	1	1	1	1	1	1	1
13	12	2	18	3	4	3	Vorhersa	ge		~	3	1	2	1	1	3	4	1
14	13	2	19	4	4	4	Uberlebe	JN .		>	4	1	1	1	1	1	1	1
15	14	1	18	3	4	4	Mehrfaci	nantworten		,	4	1	1	1	1	1	1	1
16	15	2	18	3	4	4	Maly Analy	/se tenlende	er Werte		4	1	1	1	1	1	1	1
17	16	1	26	2	4	3	Multiple	Imputation		~	3	1	1	1	1	2	2	1
18	17	1	20	2	2	2	Komplex	e Stichprob	ben	>	1	2	3	3	2	3	3	3
19	18	1	21	3	3	3	Simu	lation			3	2	2	3	2	2	4	1
20	19	1	21	3	4	4	Qualitats	kontrolle	and Madelling	···· >	3	1	3	1	1	1	2	1
21	20	2	23	2	4	3	Raumlich	ie una temp	porale Modellieru	ing >	3	1	1	1	1	1	2	1
22	21	2	22	4	4	4	Direktma	rketing	-	,	4	2	4	1	2	2	2	1
23	22	3	25	3	4	3	2	4	2	3	4	1	1	1	1	1	3	1
24	23	2	19	4	4	4	4	-99	4	3	4	1	3	1	1	3	4	2
25	24	3	18	3	2	1	2	3	3	3	4	2	4	2	1	3	3	1
20	25	1	**	2		4	1	2	2		2	2	1	1	2	1	1	
								_										
								Datenan	nsicht Variab	lenansicht								
									IBM SPS	SS Statisti	cs -Proz	zessor ist ber	eit 🛃		Unicode:	ON Klass	isch 🔚	

- 1. Dafür verwenden Sie die Funktion "Analysieren", dann...
- 2. "Deskriptive Statistiken" und...
- 3. wählen "Häufigkeiten"

	8			X	=			 1ର୍କ 🏈		Q Anwer	dung	g durchsuch								
																		Sichtbar:	68 von 68	d Variab
	💑 ID_TN	뤚 gender	🛷 age	AEQ_EN	AEQ_EN	AEQ_EN	AEQ_EN	AEQ_HO	AEQ_1	HO 🥜 AEQ I	0	AEQ_HO	AEQ_AN	AEQ_AN	AEQ_AN	AEQ_AN	AEQ_AX	AEQ_AX	AEQ	AX 🥜
1	3	1	17	- 5		4 4	3	- 3	_	3	4	3	- 1	3	3	2 1	1	3	3	1
2	100	1	17	4		5 3	3	4		2	3	3	1	1	ι :	2 1	3	4	i i	1
3	112	1	190	2	3	3 3	2	2		5	4	3	1	. 3	3	3 1	1	1	í .	1
4	127	2	19	5		4 3	3	3		4	3	3	1	. 1	L 3	2 1	4	5	i	2
5	39	2	19	1		1 1	. 2	1		1	5	3	5	5	5	5 2	2 2	2	2	2
6	12	2	18	3		•			Häu	ıfigkeiten						L 1	3	4	ŧ	1
7	51	1	19	3		-									3	3 3	8 4	5	i	2
8	23	2	19	4	0	D. Tellechere	and a fill T		Vari	able(n):		. []		Statistiker	n :	1 1	L 3	4	i l	2
9	24	3	18	3		oender: Gesci	hlecht (1= we	ibli	~	age: Alter In	anrei	i [age]		Diagramm		2 1	L 3	3	1	1
10	54	3	20	4		AEQ_EN_1: Er	njoyment "Ich	bin						Diagramm	e	2 2	2 3	2	2	4
11	79	1	20	3		AEQ_EN_2: Er	njoyment "Ich	freu	-					Format	• =	3 2	2 2	2	1	2
12	61	1	19	4		AEQ_EN_3: Er	njoyment "Ich	bin						Stil		4 1	L 2	4	ŧ	3
13	6	2	24	4	× 1	AEQ HO 1: H	ope "Ich bin z	uve				2.		Pootstran		1 1	1	2	2	2
14	16	1	26	2	1	AEQ_HO_2: H	ope "Ich bin v	olle						bootstrap		1 1	L 2	2	2	1
15	17	1	20	2		AFO HO 3. H	one "Ich hin z	LIN/P							3	3 2	2 3	3	1	3
16	10	3	20	3		Häufigkeitst	abellen anze	eigen		Tabellen im	APA	-Stil erstelle	n		3	3 2	2 2	4	i .	1
17	9	2	21	4		?	Zurü	icksetzen	E	infügen		Abbrecher	n	ОК		1 1	1	3	1	1
18	107	1	9	4												3 1	2	4	ŧ	3
19	37	1	21	3	3	3 2	2	2		2	2	2	1	. 2	2	4 3	3	4	ŧ	4
20	84	1	19	3		4 2	2	4		2	4	3	3	3	3 4	1 2	2 2	1	í .	1
21	11	1	19	3	1	3 2	2	3		4	3	3	1	1	L :	L 1	1	1	l I	1
22	92	2	19	3		4 3	2	4		3	2	2	1	2	2 3	2 2	2 2	4	ŧ.	2
23	87	2	24	2		2 2	2	2		1	3	2	-99	5	5 !	5 4	4	4	ŧ.	4
24	109	2	24	4		4 4	3	3		3	4	4	1	2	2	L 1	3	2	1	2
25	117	2	21	4		4 3	3	4		2	4	5	1	. 1	۱ :	1 1	1 1	3	1	1
		_																		

Einführung in das Data Wrangling - Konzepte und Umsetzung in SPSS | Lizenz: CC by SA 4.0 (Ella Posny // Universität Duisburg-Essen)

1. Nun ziehen Sie die interessierende Variable mit dem Pfeil in das rechte Feld...2.und wählen "Statistiken", um auszuwählen, welche Maße Sie erhalten wollen.

Ś.	SPSS Statis	tics Datei	Bearbeit	en Ansich	t Daten	Transformiere	n Analysieren	Grafik	Extras	Erweite	rungen Fenst	er Hilf	6	\odot	* 🕑		(÷	Q	a	Fr. 15. Se	pt. 10:58
• • •					Studienmo	tivation_benanr	nt_beschriftet_i	nit_skale	nniveaus_a	aktuell.	sav [DataSet2]	- IBM SP	SS Statisti	cs Dat	eneditor						
				X	= R		A			nwendu	ng durchsuch]									
																			Sichtbar	68 von 6	8 Variable
	🗞 ID_TN	뤚 gender	🛷 age	AEQ_EN	AEQ_EN	AEQ_EN	AEQ_EN 🛷 AEQ	HO 🤣 AI	EQ_HO 🛷 A	EQ_HO	AEQ_HO	AEQ_AN	AEQ_AN	ne 🍫	Q_AN 🖋	AEQ_AN	📣 🗚	Q_AX	AEQ_A	AEQ	_AX 🛷
1	3	1	17	5	4	4	3	3	3	4	3	1	3		2	1		1		8	1
2	100	1	17	4	5	3	3	4	2	3	3	1	1		2	1		3		1	1
3	112	1	190	2	3	3	2	2	5	4	3	1	3		3	1		1		L	1
4	127	2	19	5	•			Häufi	igkeiten: St	tatistik					2	1		4		5	2
5	39	2	19	1	r I	Perzentilwerte					Lagemaß				5	2	2	2		2	2
6	12	2	18	3		Quartile					Mittelwert				1	1	L	3		1	1
7	51	1	19	3		Trennwerte	für: 10	gl	eiche Grup	pen	Median				3	3	1	4		5	2
8	23	2	19	4		Perzentile:					Modalwert				1	1		3		1	2
9	24	3	18	3	1	- Hannella		_		-11	Summo				2	1	l l	3		8	1
10	54	3	20	4		Hinzulugi	en				Junne			1	2	2	2	3		2	4
11	79	1	20	3	4	Ändern								L.	3	2	2	2		2	2
12	61	1	19	4	4	Entferne	n								4	1		2		1	3
13	6	2	24	4										- 1	1	1		1		2	2
14	16	1	26	2							Werte sind C	Gruppenr	nittelpunkt	e	1	1	L	2		2	1
15	17	1	20	2		Streuung					Verteilung				3	2	2	3		8	3
16	10	3	20	3	-	🗹 Standardaby	veichung 📃 M	inimum			Schiefe				3	2	2	2		1	1
17	9	2	21	4		Varianz	. N	aximum			Kurtosis				1	1		1		8	1
18	107	1	9	4		Spannweite	🗆 S	andardfe	hler Mittelw	vert				1	3	1		2		1	3
19	37	1	21	3	-										4	3	1	3		1	4
20	84	1	19	2 3		?					Abbrechen		Weiter		4	2	2	2		L	1
21	11	1	19	3	-	-	-	-			-				1	1	L	1		L	1
22	92	2	19	3	4	3	2	4	3	2	2	1	2		2	2 2	2	2		1	2
23	87	2	24	2	2	2	2	2	1	3	2	-99	5		5	J . 4	1	4		1	4
24	109	2	24	4	4	4	3	3	3	4	4	1	2		1	1	L .	3		2	2
25	117	2	21	4	4	3	3	4	2	4	5	1	1		1	1		1		8	1
	_																				
							C.	atenansi	icht Vari	ablenar	sicht										
									IBM S	SPSS St	atistics -Proze	ssor ist	bereit 🛃			ι	Jnicod	e: ON	Klassisc	h 🔚	

1. Hier wurden sowohl Mittelwert, Median, als auch Modus ausgewählt.

2. Zusätzlich wurde die Standardabweichung ausgewählt, um auch diese vom Programm ausgegeben zu bekommen.

3. Bestätigen Sie nun mit "Weiter".

			A		AFO EN	AFO EN			. 450		0 40		AEO AN	. AEO AN			AFO AV	Sichtbar: 6	58 von 68 V	ariat
		og gender	🛷 age	ALCOLEN 4	_2	ALCOLEN _3	ALCCEN	ALC_HO	AEQ	2 AE	_3 4	_4	_1	ALCO AN	ALC AN	ALC AN	AEQ_AA	2 AEQ_AK	AEQ_AK	1
1	3	1	17	5	4	4	3	3		3	4	3	1	3	2	1	1	3	1	
2	100	1	17	4	5	3	3	4		2	3	3	1	1	2	1	3	4	1	
3	112	1	190	2	3	3	2	2		5	4	3	1	3	3	1	1	1	1	
4	127	2	19	5	4	3	3	3		4	3	3	1	1	2	1	4	5	2	1
5	39	2	19	1	1	1	2	1		1	5	3	5	5	5	2	2	2	2	1
6	12	2	18	3		•			Hä	ufigkeiter	1				1	1	3	4	1	
7	51	1	19	3					Var	riable(a);					3	3	4	5	2	1
8	23	2	19	4		Teilnehmen	de [ID_TN]		Var	age: Alter	in lahre	n [age]		Statistiker	1	1	3	4	2	1
9	24	3	18	3	💦 🕹 ge	nder: Geschl	echt (1= we	ibli		uge: / ace/	jaine	(uge)		Diagramm	2	1	3	3	1	
10	54	3	20	4	🛷 AE	Q_EN_1: Enj	oyment "Ich	bin							2	2	3	2	4	i
1	79	1	20	3	AE	Q_EN_2: Enj	oyment "Ich	freu	4					Format	3	2	2	2	2	4
12	61	1	19	4	- AE	O EN 4: Enj	ovment "Ich	fühl	*					Stil	4	1	2	4	3	1
13	6	2	24	4	🛷 AE	Q_HO_1: Ho	pe "Ich bin z	zuve						Bootstrap	1	1	1	2	2	1
14	16	1	26	2	🔗 AE	Q_HO_2: Ho	pe "Ich bin v	volle								1	2	2	1	•
15	17	1	20	2		O HO 3 Ho	ne "Ich hin z	ruwe.							3	2	3	3	3	1
16	10	3	20	3	🖸 н	äufigkeitsta	bellen anze	eigen		Tabellen	im APA	-Stil erstelle	n		3	2	2	4	1	•
17	9	2	21	4		?	Zurü	ücksetzen		Einfügen		Abbrecher	1	OK		1	1	3	1	·□
18	107	1	9	4												1	2	4	3	1
19	37	1	21	3	3	2	2	2		2	2	2	1	2	4	3	3	4	4	•
20	84	1	19	3	4	2	2	4		2	4	3	3	3	4	2	2	1	1	
21	11	1	19	3	3	2	2	3		4	3	3	1	1	1	1	1	1	1	
22	92	2	19	3	4	3	2	4		3	2	2	1	2	2	2	2	4	2	1
23	87	2	24	2	2	2	2	2		1	3	2	-99	5	5	4	4	4	4	•
24	109	2	24	4	4	4	3	3		3	4	4	1	2	1	1	3	2	2	
5	117	2	21	4	4	3	3	4		2	4	5	1	1	1	1	1	3	1	
			_																	

Einführung in das Data Wrangling - Konzepte und Umsetzung in SPSS | Lizenz: CC by SA 4.0 (Ella Posny // Universität Duisburg-Essen)

Ś	SPSS Stat	tistics	Datei	Bearbeiten	Ansic	ht D	Daten '	Transformierer	n Einfüge	en Format	Analysieren	Grafik	Extras	Erweiterungen	Fenster	Hilfe		? 0		🔕 Fr. 1	5. Sept. 11:00
	•	• • •	•						Aus	gabe3 [Dokun	nent4] - IBM S	PSS Sta	tistics Vie	wer							
	 (🗎 🗋 🚽	2	0,		- 1	E *			•	Q Anwe	endung durchsuc	h						
		~ 🖲 C	Dutput	iencies	+	Freq	uencies														68 Variablen
			- ф	Title																	Q AX
			- R N	lotes			Stati	stics													_3 🛷
1				statistics		age:	Alter in Ja	ahren													1
2	10		⊮ [] a	ige. Alter in Jan	ie i	N	Valid	129													1
3	1						Missir	ng O			_										1
4	1;					Mear	1	21,40													2
5						Mode	atri a	20,00													2
6						Std. I	Deviation	15,271													1
7																					2
,																					
8								age:	Alter in J	ahren											2
9	-							Frequency	Percent	Valid Percent	Percent										1
10						Valid	2	1	.8	.8		8									4
11							9	1	,8	,8	1,	5									2
12	(10	1	,8	,8	2,	3									3
13							17	5	3,9	3,9	6,	2									2
14							18	18	14,0	14,0	20,	2									1
15							19	27	20,9	20,9	41,	1									3
16							20	29	22,5	22,5	63,	5									1
17							21	17	13,2	13,2	76,	/									1
10	10						22	10	3,9	3,9	80,	4									3
10	-						24	8	6.2	6.2	94	5									3
19							25	1	.8	.8	95.	3									4
20							26	2	1,6	1,6	96,	Э									1
21							27	2	1,6	1,6	98,	4									1
22	4						28	1	,8	,8	99,	2									2
23	2						190	1	,8	,8	100,	D									4
24	10						Total	129	100,0	100,0											2
25	1:																				1
	_																				
	-																				
			-	_	-	-	-	_	_	_	IBM 2P	IBM SP	SS Statist	ics –Prozessor i zessor ist bereit	st bereit	H.	U	nicode: (ON KI	assisch 🔚 assisch 📊	

Wenn Sie alle Einstellungen vorgenommen haben, bestätigen Sie mit "OK".

Sie erhalten nun eine Tabelle, die die ausgewählten Maße zentraler Tendenz für die entsprechende Variable enthält.

Wenn Sie genau hinschauen, dann fällt auf, dass die Standardabweichung mit Std = 15.27Jahren relativ groß ist. Kann es sein, dass eine Abweichung von über 15 Jahren vom Mittelwert M = 21.4 abweicht normal ist?

Ein Blick auf den Datensatz enthüllt, dass es einen Ausreißer mit dem Wert 190 gibt, sowie einen Ausreißer mit dem Wert 2, einen mit dem Wert 9 und einen mit dem Wert 10. Diese Werte sind natürlich unplausibel.

Die Fälle wurden für eine erneute Analyse entfernt.

Die Tabelle mit den Maßen zentraler Tendenz ohne die erwähnten Ausreißer, sehen Sie im Folgenden.

🔹 SPSS Sta	tistics Datei Bearbeiten	Ansicht [Daten '	Transformierer	n Einfüge	n Format	Analysieren	Grafik	Extras	Erweiterungen	Fenster	Hilfe		? Q	🗟 🔕 Fr. 1	5. Sept. 11:02
					Ause	jabe3 [Dokum	ent4] - IBM S	PSS Sta	tistics Vie	wer						
🗁 🔚 🧯	🔁 🔚 🖨 📐 🥑	b 🛄	IC '	א 🎇	🖺 🕌	=	D	•	Q Anw	endung durchsu	ch					
	Output		26	2	1,6	1,6	96,9									
126 : ID_TN	Frequencies		27	2	1,6	1,6	98,4									68 Variablen
💰 ID_TI	Title Title		28	1	,8	,8	99,2									Q_AX 👩
	The Notes		190	1	,8	,8	100,0									_3 👻
1	age: Alter in Jahre	_	Total	129	100,0	100,0										1
2 10	Frequencies															1
3 10	+ @ Title	🔶 Freq	uencies													2
4 (Notes															1
5	age: Alter in Jahre		Stati	stics												1
6		age:	Alter in Ja	hren												1
7		N	Valid	125												1
8 4		_	Missir	ig 0												1
9 (Mear	n	20,40												1
10 1		Med	ian	20,00												-99
11		Std.	e Deviation	2.268												1
12				-,												1
12						- h										1
13				age:	Alter in J	anren										1
14				Frequency	Percent	Valid Percent	Percent									1
15		Valid	1 17	5	4,0	4,0	4,0	-								1
16			18	18	14,4	14,4	18,4									1
17			19	27	21,6	21,6	40,0									1
18			20	29	23,2	23,2	63,2									1
19 (21	17	13,6	13,6	76,8									1
20			22	5	4,0	4,0	80,8									1
21			23	10	6.4	6.4	95.2									1
22 13			25	1	.8	.8	96.0									1
23			26	2	1,6	1,6	97,6									1
24 1:			27	2	1,6	1,6	99,2									2
25			28	1	,8	,8	100,0									2
20			Total	125	100,0	100,0										2
							IBM S	PSS Sta	atistics -P	rozessor ist be	reit 🛃		Un	icode: ON	Klassisch	
							IBM SP3	o statis	sucs -Pro	zessor ist bere			Un	icode: ON	Kiassisch 📘	

Diese Werte sind schon deutlich plausibler.

Wir fassen zusammen:

Der Mittelwert beträgt M = 21,4 Jahre.

Der Median beträgt Md = 20 Jahre. Das bedeutet, dass der Wert 20 in der Mitte liegt. Der Modus beträgt Mod = 20 Jahre. Das bedeutet, dass 20 Jahre das am häufigsten auftrende Alter in der Stichprobe ist.

Die Standardabweichung beträgt Std = 2,27 Jahre. Das bedeutet, dass die durchschnittliche Abweichung vom Mittelwert 2,27 Jahre beträgt. Das ist plausibel, wenn wir überlegen, wie alt Studierende in der Regel sind. Wir können uns gut vorstellen, dass dies eine plausible Streuung ist.

Wir wissen nun einiges mehr über die Altersstruktur der Stichprobe.